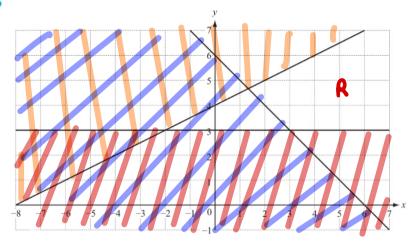

Equations

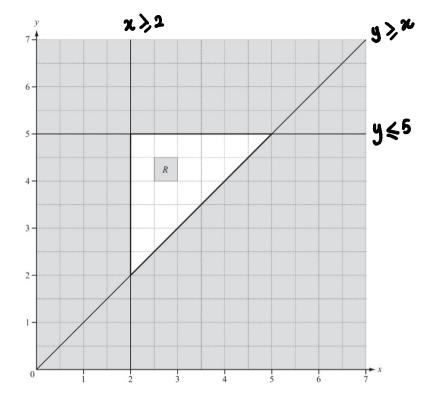
On the grid, draw and label the region R that satisfies these inequalities. Shade the **unwanted** regions.


[5]

By shading the **unwanted** regions of the grid, find and label the region R which satisfies the following four inequalities.

$$y \ge 0 \qquad x \ge 4 \qquad 2y \le x \qquad 2y + x \le 12$$
 [3]

Question 3

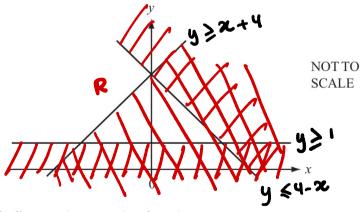

The region R contains points which satisfy the inequalities

$$y \le \frac{1}{2}x + 4$$
, $y \ge 3$ and $x + y \ge 6$.

On the grid, label with the letter R the region which satisfies these inequalities.

You must shade the unwanted regions.

[3]



The region R is bounded by three lines.

Write down the three inequalities which define the region R.

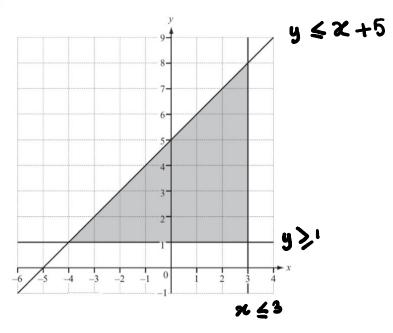
[4]

Question 5

The diagram shows the lines y = 1, y = x + 4 and y = 4 - x.

On the diagram, label the region R where $y \ge 1$, $y \ge x + 4$ and $y \le 4 - x$.

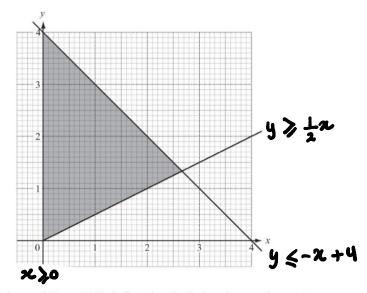
[3]



(a) Draw the lines
$$y = 2$$
, $x + y = 6$ and $y = 2x$ on the grid above.

[4]

(b) Label the region R which satisfies the three inequalities


$$x + y \ge 6$$
, $y \ge 2$ and $y \le 2x$. [1]

Find the three inequalities which define the shaded triangle in the diagram.

[5]

Question 1

Find the three inequalities which define the shaded region on the grid.

[5]

A new school has x day students and y boarding students.

The fees for a day student are \$600 a term.

The fees for a boarding student are \$1200 a term.

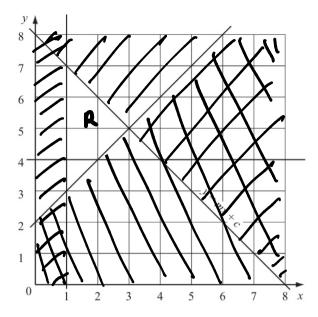
The school needs at least \$720 000 a term.

(a) Show that this information can be written as
$$x + 2y \ge 1200$$
. [1]

$$600x + 1200y \ge 720000$$

 $x + 2y \ge 1200$

x+y < 900


(c) Draw two lines on the grid below and write the letter ${\bf R}$ in the region which represents these two inequalities.

(d) What is the least number of **boarding** students at the school? [1]

The Maths Society

[1]

(a) One of the lines in the diagram is labelled y = mx + c. Find the values of m and c.

[1]

[1]

(b) Show, by shading all the unwanted regions on the diagram, the region defined by the inequalities

$$x \ge 1$$
, $y \le mx + c$, $y \ge x+2$ and $y \ge 4$.

Write the letter \mathbf{R} in the region required.

[2]

Question 4

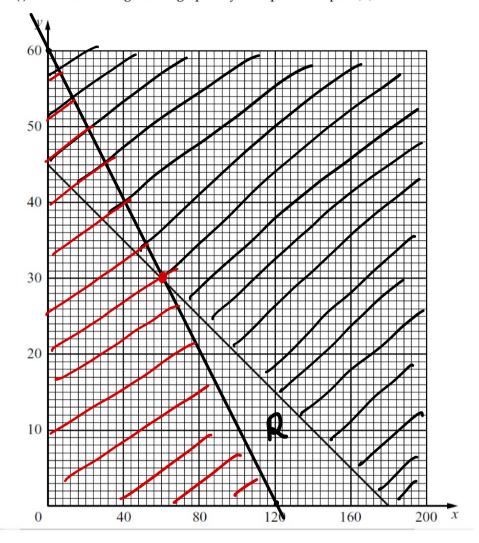
A ferry has a deck area of 3600 m² for parking cars and trucks. Each car takes up 20 m² of deck area and each truck takes up 80 m². On one trip, the ferry carries x cars and y trucks.

(a) Show that this information leads to the inequality $x + 4y \le 180$.

[2]

(b) The charge for the trip is \$25 for a car and \$50 for a truck.

The total amount of money taken is \$3000.


Write down an equation to represent this information and simplify it.

[2]

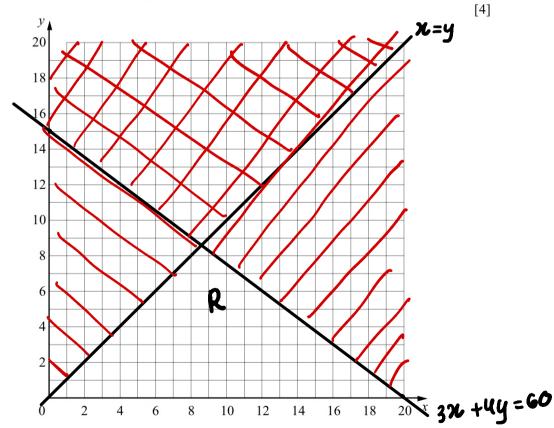
(c) The line x + 4y = 180 is drawn on the grid below.

(i) Draw, on the grid, the graph of your equation in part (b).

(ii)

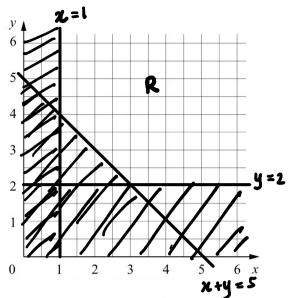
Write down a possible number of cars and a possible number of trucks on the trip, which together satisfy both conditions.

[1]


Marina goes to the shop to buy loaves of bread and cakes. One loaf of bread costs $\underline{60}$ cents and one cake costs $\underline{80}$ cents. She buys x loaves of bread and y cakes.

(a) She must not spend more than \$12. Show that $3x + 4y \le 60$.

$$60n + 80y \le 1200$$
 700
 $6x + 8y \le 1200$
 720
 720
 730
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740
 740


(b) The number of loaves of bread must be greater than or equal to the number of cakes. Write down an inequality in x and y to show this information.

(c) On the grid below show the two inequalities by shading the **unwanted** regions. Write R in the required region.

(d) The total number of loaves of bread and cakes is x + y. Find the largest possible value of x + y.

[1]

(a) On the grid, draw the lines x = 1, y = 2 and x + y = 5.

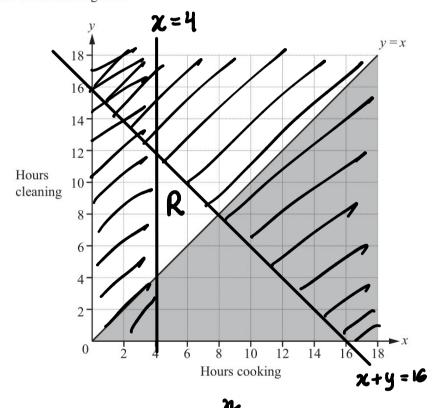
[3]

[1]

In one week, Neha spends x hours cooking and y hours cleaning.

The time she spends cleaning is at least equal to the time she spends cooking.

This can be written as $y \ge x$.

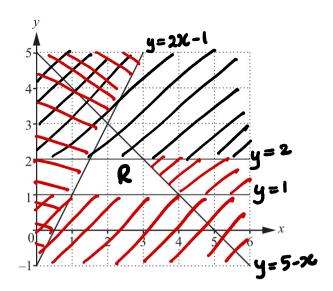

She spends no more than 16 hours in total cooking and cleaning. She spends at least 4 hours cooking.

(a) Write down two more inequalities in x and/or y to show this information.

[2]

(b) Complete the diagram to show the three inequalities. Shade the **unwanted** regions.

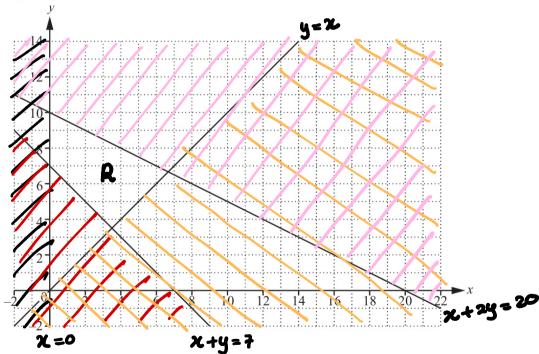
[3]



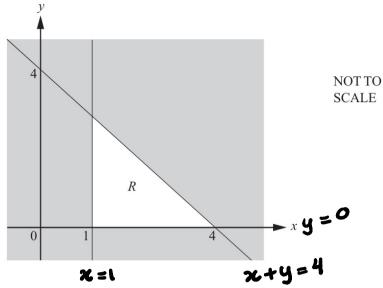
(c) Neha receives \$10 for each hour she spends cooking and \$8 for each hour she spends cleaning.

Work out the largest amount she could receive.

[2]

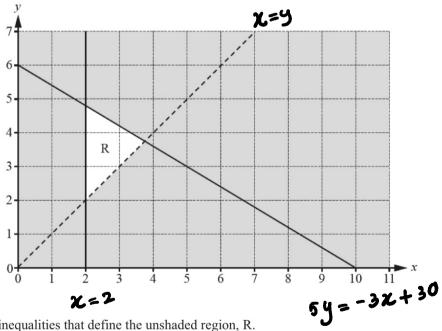

$$10 \times + 89$$
= $80 + 69$
= $$199$

By shading the unwanted regions of the grid, find and label the region R that satisfies the following four inequalities.


$$y \le 2$$
 $y \ge 1$ $y \le 2x - 1$ $y \le 5 - x$ [3]

Question 3

By shading the unwanted regions of the grid above, find and label the region R that satisfies the following four inequalities.


$$x \geqslant 0$$
 $x + y \geqslant 7$ $y \geqslant x$ $x + 2y \leqslant 20$ [3]

Write down the three inequalities that define the unshaded region, R.

x+y < 4 y≯° x≯¹

Question 5

Find the three inequalities that define the unshaded region, R.

y > x n > 2 $5y \leq -3x + 30$

The Maths Society

[4]

[5]